Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses
نویسندگان
چکیده
Non-deforestation fire – i.e., fire that is typically followed by the recovery of natural vegetation – is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate–carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate– carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions – implicitly implying that they have similar effects per unit of CO2 emitted – should therefore be avoided, particularly when these comparisons involve gross fire emissions, because the reservoirs from which these emissions are drawn have very different residence times (millions of years for fossil fuel; years to centuries for vegetation and soil–litter). Our results also support the notion that most net emissions occur relatively soon after fire regime shifts and then progressively approach zero. Overall, our study calls for the explicit representation of fire activity as a valuable step to foster a more accurate understanding of its impacts on global carbon cycling and temperature, as opposed to conceiving fire effects as congruent with the consequences from fossil fuel combustion.
منابع مشابه
Fire vs . fossil fuel combustion : the source of CO 2 emissions affects the global carbon cycle and climate responses
متن کامل
Policy Update: Observing human CO<sub>2</sub> emissions
The interaction between the Earth’s carbon cycle and climate change remains a top element of uncertainty within climate change projections. In order to better understand this relationship, carbon cycle scientists use a variety of modeling and observational tools to disassemble the many fluxes and reservoirs that constitute the global carbon cycle. In addition to advancing the scientific underst...
متن کاملCurrent and future CO2 emissions from drained peatlands in Southeast Asia
Forested tropical peatlands in Southeast Asia store at least 42 000 Million metric tonnes (Mt) of soil carbon. Human activity and climate change threatens the stability of this large pool, which has been decreasing rapidly over the last few decades owing to deforestation, drainage and fire. In this paper we estimate the carbon dioxide (CO2) emissions resulting from drainage of lowland tropical ...
متن کاملInteractive comment on “ Fire vs . fossil fuel : all CO 2 emissions are not created equal
The manuscript by Landry and Matthews documents how CO2 emissions generated from global wildfires differ from those generated by fossil fuel combustion in terms of atmospheric fraction and temperature. The authors use a coupled model to assess this, and also show temperature effects from altered land surface albedo. There are some potentially interesting and useful results, including the net vs...
متن کاملHigh resolution fossil fuel combustion CO2 emission fluxes for the United States.
Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fos...
متن کامل